Active Microrheology of the Vitreous of the Eye applied to Nanorobot Propulsion*

Tian Qiu, Debora Schamel, Andrew G. Mark, and Peer Fischer, Member, IEEE

Abstract—Biomedical applications of micro or nanorobots require active movement through complex biological fluids. These are generally non-Newtonian (viscoelastic) fluids that are characterized by complicated networks of macromolecules that have size-dependent rheological properties. It has been suggested that an untethered microrobot could assist in retinal surgical procedures. To do this it must navigate the vitreous humor, a hydrated double network of collagen fibrils and high molecular-weight, polyanionic hyaluronan macromolecules. Here, we examine the characteristic size that potential robots must have to traverse vitreous relatively unhindered. We have constructed magnetic tweezers that provide a large gradient of up to 320 T/m to pull sub-micron paramagnetic beads through biological fluids. A novel two-step electrical discharge machining (EDM) approach is used to construct the tips of the magnetic tweezers with a resolution of 30 µm and high aspect ratio of ~17:1 that restricts the magnetic field gradient to the plane of observation. We report measurements on porcine vitreous. In agreement with structural data and passive Brownian diffusion studies we find that the unhindered active propulsion through the eye calls for nanorobots with cross-sections of less than 500 nm.

I. INTRODUCTION

The human body contains a variety of complex biological fluids. They are often non-Newtonian fluids with viscoelastic properties, [1] e.g. mucus, sputum, vitreous humor of the eye, etc. Many of them, e.g. blood, saliva, and synovial fluid in the joints, exhibit shear thinning behavior. Understanding the local rheology is necessary if micro and nanorobots are to navigate these complex fluids. A number of micro-robots have been realized that swim in Newtonian fluids [2-5], but the movement in a non-Newtonian fluid poses extra challenges. There is a need to understand the local rheology of these biologically and medically important fluids down to the nanoscale in order to optimize the design of nanorobots and artificial micro-swimmers.

In microrheology, colloidal particles are directly embedded in the fluid, which permits its rheological characterization at small length scales. [6] This approach has several advantages over traditional rheological measurements. Only small sample volumes down to microliters are required [7]. Secondly, due to small size of the probe, microrheology is able to provide local information in inhomogeneous media. In passive microrheology, the random movements of colloidal probes by thermal excitation are measured to very high frequencies, far beyond those possible in macroscopic rheometry; while in active microrheology the interaction of micro probes with the microstructure is directly measured and local material heterogeneities can be analyzed [6]. Last but not least, micro probes can be injected into real biological tissues, even in vivo. This is extremely important for biomedical samples, for which the fluidic properties may change dramatically due to degradation, liquidation etc. after removal to an ex situ environment.

Active microrheology probes have been actuated by different approaches, including optical tweezers, magnetic tweezers and atomic force microscopes (AFM).[8] Among these, magnetic tweezers [9-12] exert the largest force on the probe. In previous work, different geometries have been proposed for magnetic tweezers, depending on the number of magnetic poles. [13, 14] Key in all setups is the number, shape and size of the magnetic pole tips. These should be very thin in the horizontal direction in order to realize a high gradient, but stay in well-defined relative positions. Pole tips are generally made by electroplating [13], pulsed electrodeposition followed by photolithography [15] or laser cutting [14]. The drawback with these approaches is that they cannot fabricate large heights of the magnetic layer (the largest height is normally smaller than 10 µm by deposition or plating and smaller than 200 µm by laser cutting), which may lead to an inhomogeneous magnetic field orthogonal to the viewing direction (Z-height in a microscope). Any unwanted Z-component of the gradient will drag the magnetic beads out of the focus plane of the microscope and severely limit the accuracy of the microrheological measurements. Another disadvantage of electroplating or vapor deposition processes is the difficulty in exercising the stoichiometric control necessary for advanced magnetic alloys.

Here, we describe a three-pole magnetic tweezer whose tips are fabricated by electrical discharge machining (EDM). The EDM method can process tips with deep sections (500 µm thickness or more), high spatial resolution (30 µm) with high aspect ratio (thickness vs. tip apex diameter ~17:1). The three tips produce a large and homogeneous magnetic field gradient. The gradient is characterized by applying Stokes law to magnetic beads dragged through a Newtonian fluid. We apply this instrument to measure the rheological properties, under active manipulation, of vitreous humor, a target medium for biomedical robots. The measurements show that the mesh of the polymer network found in the vitreous impedes the
passage of particles greater than 500 nm in diameter. This establishes an important size constraint for nanorobots intended to operate freely within the eye.

II. MATERIALS AND METHODS

A. Materials and sample preparation

Four kinds of paramagnetic beads were used. 0.5 µm, 1.0 µm and 1.89 µm diameter magnetic beads (PMSi-CH.5-5, PMSi-CH1.0-5, PMC-1.5, respectively, all with carboxyl functional groups, 25 mg/mL) were obtained from Kisker Biotech. Larger 2.7 µm diameter magnetic beads (Dynabeads M-270, Amine functional group, 2x10^9 beads/mL) were obtained from Invitrogen.

500 µL of glycerol (99.5%, VWR), used as received, was mixed thoroughly with 5 µL of 0.5 or 1.0 µm diameter beads with quantum dot coupling, or 1 µL of 1.89 µm diameter beads without quantum dot coupling.

Porcine eyes were kept on ice and experiments were carried out within 6 h of harvesting. The vitreous from the eye was dissected with a scalpel. The dissected ~1 mm³ parts were randomly selected for the microrheology study, and injected with 2 µL of beads (with diameters of, respectively, 0.5 µm, 1.0 µm and 2.7 µm). 1 µL of carboxyl-functionalized superparamagnetic silica particles (0.5 and 1 µm diameter) were mixed with 750 µL MES-buffer pH 6.5 (final concentration 20 mM), 2 mg of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimid (EDC; Sigma Aldrich) and 1 mg of N-Hydroxysuccinimid (NHS; Sigma Aldrich) were added and the mixture was stirred for 2 h at 4 °C. The particles were washed twice with MES-buffer by centrifugation and resuspension, and dispersed in 0.5 mL MES-buffer (pH 6.5, 20 mM) containing 2 µL of amino-functionalized eFluor 650NC (eBioscience). The solution was stirred overnight at 4 °C and washed 3 times with water by centrifugation.

B. Quantum dot coupling to the magnetic beads

250 µL of carboxyl-functionalized superparamagnetic silica particles (0.5 and 1 µm diameter) were mixed with 750 µL MES-buffer pH 6.5 (final concentration 20 mM), 2 mg of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimid (EDC; Sigma Aldrich) and 1 mg of N-Hydroxysuccinimid (NHS; Sigma Aldrich) were added and the mixture was stirred for 2 h at 4 °C. The particles were washed twice with MES-buffer by centrifugation and resuspension, and dispersed in 0.5 mL MES-buffer (pH 6.5, 20 mM) containing 2 µL of amino-functionalized eFluor 650NC (eBioscience). The solution was stirred overnight at 4 °C and washed 3 times with water by centrifugation.

C. Magnetic tweezers apparatus

As illustrated in Fig. 1, the magnetic tweezers apparatus uses a 3-pole geometry to achieve 2D control of the micro-probes in the plane of the tips. Three independently driven coils control the magnetic field in each tip. Each coil is made of 2200 turns of 0.5 mm diameter copper wire around a steel spool (St 37-2). A thermocouple embedded in the middle of each coil monitors its temperature (Fig. 1(B)).

The three pole tips are the key elements of the apparatus. From the outer circumference of the apparatus where they connect to the coils, each pole tip tapers to a fine apex. The three tips, arranged at 120°, point inwards towards the working volume. To achieve high gradients the apices need to be closely spaced, and in order to maintain a symmetric field within the working volume requires high spatial precision, and long-term stability. However, efficient control of the magnetic flux requires that each tip is isolated from the others by areas of high magnetic reluctance. These requirements – separated micro-sized tips keeping precise relative positions at

![Figure 1. Magnetic tweezers apparatus. (A) 3D design model of the apparatus. (B) picture of the assembled apparatus on the microscope stage. (C) Enlarged picture of the three pole tips. Calculated magnetic field flux density is shown by color map. (D) Scanning electron microscope (SEM) image of the three pole tips at a viewing angle of 10 degrees.](image-url)
\[F = 6\pi\eta R v \]

where \(\eta \) is the viscosity of the fluid, \(R \) is the radius of the sphere, and \(v \) is the velocity of the sphere.

The magnetic force \(F \) on an object whose magnetic moment \(M \) is aligned with the magnetic field is

\[F = M \cdot \nabla B \]

where \(B \) is the magnitude of the magnetic field. For a homogeneous particle, the magnetic moment is

\[M = H_{ci} V \]

For the magnetic beads used here \(H_{ci} = 3.5 \times 10^5 \text{ A/m} \) [16]. \(V \) is the volume of the object, which in this case

\[V = \frac{4}{3}\pi R^3 \]

With known properties of the magnetic beads, we measure the velocity of the beads \(v \) to calculate the gradient of the field \(\nabla B \) from equations (1) and (4):

\[\nabla B = \frac{9\eta v}{2R^2H_{ci}} \]

Furthermore, it can be seen that for a given gradient, the relationship between the beads’ velocity \(v \) and diameter \(d \) is quadratic:

\[v = \frac{H_{ci}\nabla B}{18\eta}d^2 \]

\[F = \frac{3}{2\pi\eta R^2} \]

(E. Magnetic gradient calibration)

We used measurements of magnetic particle velocity in a Newtonian fluid to calibrate the magnetic gradient using Stokes law. The fluid drag \(F \) of a sphere moving at low Reynolds number is:

\[F = 6\pi\eta R v \]

D. Magnetic field simulation

A 3D model of the apparatus was created in Inventor 2012 (Autodesk Inc.) and the magnetic performance was simulated in Comsol 4.3 (Comsol Multiphysics). Because the feature sizes of the tips (30 \(\mu \)m) and coils (30 mm) differ by three orders of magnitude, the model was simulated in two separate parts: the coil and the three tips. This allowed finer resolution of the mesh at the pole tips, without requiring micron scale mesh sizes over the entire apparatus volume. The magnetic flux generated by the coil in the large-scale calculation was applied as a magnetization to the tips in the small scale model. In this manner the magnetic field in the working volume between the three tips was simulated.

\[\nabla B = \frac{9\eta v}{2R^2H_{ci}} \]

\[v = \frac{H_{ci}\nabla B}{18\eta}d^2 \]
III. RESULTS AND DISCUSSIONS

A. Simulation results

The results of the simulations of the magnetic flux density on the center plane of the tips, with 2.0 A excitation current, are shown in Fig. 4(A) and (B). The strength and gradient along the three principal axes running through the center point are shown in Fig. 4(C). The magnetic flux density increases dramatically from 0.1 T to 1.0 T within the 300 µm gap. The highest gradient is achieved very near the tips, however this area is not useful for microrheology, because the gradient there is non-uniform (i.e. the second derivative of the field strength is non-negligible) and particles will also be easily attracted to and trapped by the tip. In contrast, inside the working volume, 50 µm from the center point, the field gradient in the x-direction is almost constant at ~1 kT/m, ideal for microrheology experiments. Furthermore, the gradients in the y and z directions are negligible.

Figure 4. Comsol simulation results of the magnetic field. (A) Magnetic flux density. (B) Enlarged picture of the central tip area (shown as red box in A). x and y directions are shown by arrows. (C) The magnetic flux density and gradient along the center line (shown as red dashed line in B).

B. Magnetic gradient calibration

To measure the magnetic gradient, we used different beads in glycerol of known viscosity. All experiments were conducted with a constant current of 0.25 A. As shown in Fig. 5(A), the velocity of beads increases quadratically with diameter, in accord with equation (6). Since the magnetic force rises with the cube of bead's diameter, while the fluidic drag increases only linearly, in a Newtonian fluid larger particles move faster. However, as we shall see, this may not be true if the fluid is non-Newtonian, especially if it contains complicated networks e.g. a biopolymer network.

The gradient's response to coil current was tested with 1.0 µm beads. As expected, the bead velocity, and hence the field gradient driving them, rises linearly with the current (Fig 5(B)). The measured gradient at 2.0 A current is 320±74 T/m. This is about 3 times smaller than the simulation result. The discrepancy arises because the simulation was conducted on separate coil and tip models matched by the flux injected into the tip. This likely overestimates the magnetization of the tip. Secondly, at this field the steel tips have already reached saturation near their apices. The saturation flux density of St37-2 steel is about 1.5 T,[18] smaller than the largest flux density found in the simulation. The gradient could be further improved by using a material with a higher saturation magnetization. For example oriented silicon iron saturates at 2.0 T [19] and would therefore provide a maximum gradient 1.3 times higher than the current material.

Figure 5. Magnetic gradient characterization in glycerol. (A) Beads' average velocity increases quadratically with diameter at fixed coil current 0.25 A. The dashed line is the quadratic fit of the data. (B) Beads' average velocity increases linearly with coil current at fixed bead diameter 1.0 µm. Magnetic gradient strengths are calculated based on Eqn. (5).
shows no significant difference with 1.0 µm beads (P>0.05 for t-test). In contrast, for a Newtonian fluid one would expect that the velocity of beads should increase quadratically with the bead diameter (shown in Fig. 5(A)). The reason is the underlying complexity of the vitreous which is composed of a polymer network of collagen type II fibrils and high molecular-weight, polyanionic hyaluronan macromolecules [20]. It follows that if the particle diameter is smaller than the mesh size, it can easily be pulled through the vitreous.

A previous study of passive Brownian diffusion and structural data shows that the mesh size of bovine vitreous is ~550±50 nm, and polystyrene nanoparticles coated with –COOH in the size range of 100-200 nm readily diffused through the mesh.[21] Our data agrees with this result, moreover, we find that 500 nm –COOH coated nanoparticles can be actively pulled through the polymer network. In this paper high magnetic gradients were used to achieve active pulling of the nanoparticles. It will be of interest to determine the smallest practical gradients that can be used to pull nanoparticles through the vitreous, and in particular if such a scheme can be realized in vivo. Active actuation of the nanoparticles provides more potential for targeted drug delivery to specific region. Moreover, finding the largest possible size that can actively pass through the polymer network provides useful information for the design of untethered nanorobots moving through complex biological tissues.

IV. CONCLUSIONS

In this work, we report a novel two-step EDM approach to manufacture magnetic tweezer tips at high horizontal resolution (30 µm) and high aspect ratio (~17:1). This is a fast and cost-effective method to construct high gradient magnetic tweezers (320 T/m) with a homogeneous direction that restricts the gradient to the plane of observation. This system was utilized to study the micro rheology of porcine vitreous. We discovered that unhindered active propulsion through the eye calls for nanorobots with cross-sections of less than 500 nm. This system has the potential to be a reliable and easy-to-use method to study the micro rheology of biological fluids and provide useful information on the design of artificial self-propelling and untethered micro-robots in complex biofluids.

REFERENCES
