Header logo is

Acoustic hologram enhanced phased arrays for ultrasonic particle manipulation




The ability to shape ultrasound fields is important for particle manipulation, medical therapeutics and imaging applications. If the amplitude and/or phase is spatially varied across the wavefront then it is possible to project ‘acoustic images’. When attempting to form an arbitrary desired static sound field, acoustic holograms are superior to phased arrays due to their significantly higher phase fidelity. However, they lack the dynamic flexibility of phased arrays. Here, we demonstrate how to combine the high-fidelity advantages of acoustic holograms with the dynamic control of phased arrays in the ultrasonic frequency range. Holograms are used with a 64-element phased array, driven with continuous excitation. Moving the position of the projected hologram via phase delays which steer the output beam is demonstrated experimentally. This allows the creation of a much more tightly focused point than with the phased array alone, whilst still being reconfigurable. It also allows the complex movement at a water-air interface of a “phase surfer” along a phase track or the manipulation of a more arbitrarily shaped particle via amplitude traps. Furthermore, a particle manipulation device with two emitters and a single split hologram is demonstrated that allows the positioning of a “phase surfer” along a 1D axis. This paper opens the door for new applications with complex manipulation of ultrasound whilst minimising the complexity and cost of the apparatus.

Author(s): Cox, L. and Melde, K. and Croxford, A. and Fischer, P. and Drinkwater, B.
Journal: Phys. Rev. Applied
Volume: 12
Pages: 064055
Year: 2019
Month: November
Day: 19

Department(s): Micro, Nano, and Molecular Systems
Bibtex Type: Article (article)
Paper Type: Journal

DOI: https://doi.org/10.1103/PhysRevApplied.12.064055
URL: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.12.064055


  title = {Acoustic hologram enhanced phased arrays for ultrasonic particle manipulation},
  author = {Cox, L. and Melde, K. and Croxford, A. and Fischer, P. and Drinkwater, B.},
  journal = {Phys. Rev. Applied},
  volume = {12},
  pages = {064055},
  month = nov,
  year = {2019},
  url = {https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.12.064055},
  month_numeric = {11}